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Abstract: - In the propose of the work, we concerns the elaboration an efficient and robust control of active and 

reactive power by the use the PI regulators control (FOC) a power converters directly connected to the stator 

and the rotor of a Doubly Fed Induction Generator (DFIG) system incorporated in a wind turbine to improve 

the performance of a speed wind turbine. In the aim to assess the performance and dynamics of the wind 

system, for the different test speeds of the wind, we are interested in the modeling, development and control of 

the wind system. Initially, a control strategy of the MPPT-DFIG is presented. Therefore, the aim is the study 

and implementation of the new control technique for wind systems. This control technique is based on the 

orientation control of the flow rotor to DFIG. Finally, the control simulation results are simulated on the 

environment Matlab / Simulink. A very detailed analysis of simulation results of wind conversion chain system 

is performed with the objective to evaluate and optimize the performance of the proposed system. 

 

Key-Words: - Wind Turbine; DFIG-Generator; modeling; Rotor Control; vector control; MPPT Control; 

Orientation of the flow rotorique; Matlab / Simulink. 

 

1 Introduction 
The electricity has become more and more essential 

for humanity. Indeed, access to electricity, is the 

guarantee of best living conditions (hygiene, health, 

education). So it is at the heart about the future of 

our society. It is as much by a factor of construction 

and wealth creation. On the one hand, demographic 

evolution of the world implies a sustainable increase 

in energy needs. Moreover, energy consumption, 

still on the increase, is reduce fossil energy reserves 

(coal, oil, gas) and away from the use of polluting 

fossil energy (carbon dioxide emissions), many 

countries have looked to renewable energy. There 

are many renewable energy resources: hydropower, 

wind power, solar thermal and photovoltaic, the 

energy produced by the waves and marine currents, 

geothermal and biomass [1]. These energy resources 

are virtually inexhaustible and clean. The wind 

power is among the renewable energies, the one that 

knows the fastest growing in the world. It is almost 

universally recognized as the most promising source 

of energy to produce clean electricity in the short 

and medium term. And it contributes to 

environmental preservation. 

Currently, Sustainable development and 

renewable energy today arouse the interest of 

several research teams. Thus, the development and 

the multiplication of wind turbines have led the 

researchers to improve the efficiency of 

electromechanical conversion and quality of the 

energy supplied. It is in this context that we present 

a study on the use of a doubly fed induction 

generator (DFIG) in a wind system, because of the 

many advantages over other types of electric 

machines, since its construction is simple, its low 

cost, its security interest of operation, its robustness 

and especially its simple and economical 

maintenance. Through evolution and development 

of new technology recent power electronics and 

informatics, the problems inherent in the controls 

and operation of the various applications of the 

speed variables DFIG are resolved and simplified. 

In this context, for appropriate operation of the 

variable speed DFIG, one must insert a power 

converter PWM and control by vector control 

orientation of the flow rotor, whose objective is to 

regulate the electrical power extract it from the 

machine to its reference value, we apply this control 

to successfully DFIG, which gave a good powerful 

tool for its control. The performance of this control 

will be conducted by simulation results with 

interpretations. Figure 1 presents a general structure 
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of the electrical control of the wind energy system, 

which is studied in this work, constituted the wind 

turbine with three swivel blade length R, the DFIG 

generator and the speed multiplier: 

 
Figure 1.  Overall architecture of the control system of the wind. 

2 Modeling of Wind Power System 
2.1 Modeling of the Turbine 

The modeling of the wind turbine is 

characterized by the curves of the power coefficient, 

which corresponds to the relation between the 

mechanical power extract from the wind and the 

incident power. The expression for the power 

extracted available on the rotor of the turbine, is 

expressed by [2]: 
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With: 

S: The surface swept by the blades of the turbine 

(m2). 

ρ : The density of air ( kg/m3 1.225=ρ ). 

V : Wind speed (m/s). 

),( βλpC  : Power coefficient. 

Hence the power coefficient, ),( βλpC , to a 

limit known as Betz limit. This limit is the 

maximum extractable power for a given wind speed

593.0),(max ≈βλpC  [15]. For the DFIG, the 

power coefficient is possible to model with a single 

equation that depends on the speed ratio ë and the 

orientation angle â of the blades as follows [2]: 
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From equation (2), it displays the power 

coefficient curves as a function of λ for different β  

values [23]: 

 
Figure 2.  Curves of the Cp power coefficient as a function of λ and β. 

From Figure 2, we obtain a maximum power 

coefficient 0.4798),(max =βλpC , for a speed ratio

012 == βλ and  , by setting βλ andopt
 

respectively to their optimal values; the wind system 

will provide optimal electrical power. The power 

and mechanical torque of the turbine is noted [8]: 
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With: 

tΩ  : The turbine rotation speed. 

Cmec : Torque on the slow axis (turbine side). 

According to equations (1), (2), (3) and (4), we 

model the turbine as follows: 

 
Figure 3.  Modeling of the wind turbine. 

2.2 Multiplier modeling 
The multiplier is the connection between the wind 

turbine and DFIG. It is adapted the speed of the 

turbine to that of the generator as well mechanical 

torque on the shaft of the generator by the following 

equations [3]: 
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With: 

Ωg: generator speed (speed shaft in rad/s). 

G: multiplication ratio. 

Ωt: blade rotation speed (output shaft in rad/s). 

Cg: mechanical torque on the axis of the 

generator (Nm). 

Caer: mechanical turbine torque (N · m). 
The next block diagram represents the modeling of 

the multiplier for wind: 

 
Figure 4.  Modeling of wind multiplier. 

2.3 Shaft Modeling 
The fundamental equation of the dynamics that 

characterize the mechanical behavior of the turbine 

and generator from the total mechanical torque 

(Cmec) applied to the rotor is given by the 

following formula: 
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With: 

mécΩ  : Mechanical speed the DFIG. 

Car  : Aerodynamic torque on the fast axis of the 

turbine. 

Cem  : Electromagnetic torque. 

f : friction coefficient. 

In operation the electromagnetic torque 

generator Cmec has a negative sign. The next 

block diagram represents the modeling of the 

shaft for wind [10]: 

 
Figure 5.  Modeling of the turbine shaft. 

3 Extraction of Maximum Power by 

the Method MPPT 
The MPPT (Maximum Power Point Tracking) is a 

principle for tracking the maximum power point of 

an electric generator for a variant source. The MPPT 

has been created to have the best possible 

connection between the source and the nonlinear 

grid to extract the maximum power. 

In order to capture the maximum power of the 

incident wind, must permanently adjust the rotation 

speed of the turbine to the wind. The wind speed is 

difficult to measure, we assume that the wind speed 

is constant over the study period, the rotation speed 

of the turbine is assumed to be constant with respect 

to the high inertia of the latter. If we neglect the 

friction coefficient of the mechanical shaft, we can 

write the following equation [4]:  

Cg= Cem     (7) 
With, Cg is the torque exerted on the shaft after the 

multiplier. 

Then, the reference of the electromagnetic torque 

of the turbine is obtained from the following 

equation: 
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Hence the electromagnetic torque reference is: 
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The following block diagram shows the 

extraction modeling of the maximum power 

from the equation (9): 

 
Figure 6.  Maximum power extraction model by startigé MPPT.  

On the basis of the previous equations and models, 

the global schema we can give to all the dynamic 

model of the wind turbine (Fig 7): 
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Figure 7.  Synoptic diagram of global model the wind turbine with maximum power extratction.  

4 Modeling of the DFIG 
For a better representation of the behavior of a 

doubly fed induction generator, it is necessary to use 

a specific model and simple. The two-phase models 

(d, q) given by the Park transformation is used [9]. 

4.1 Electrical Equations of DFIG 
The equations of the stator voltages Vs (d, q) and 

the rotor Vr (d, q), the dynamic model are expressed 

by DFIG [5]: 
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4.2 Magnetic Equations 
The following magnetic equations are taken from 

electrical equations (11): 
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4.3 Mechanical Equations  
The electromagnetic torque of the DFIG is:  

)..( sdrqsqrdem PC ϕϕϕϕ −=    (13) 

With:  

φs(d,q), φr(d,q) : Stator and rotor two-phase flow in 

the reference of PARK. 

Is(d,q), Ir(d,q) : Stator currents and rotor in the 

reference of PARK.  
Rs, Rr : Stator and rotor resistances.  

Ls, Lr : Inductors cyclic stator and rotor.  

M: Cyclic mutual inductance. 

p : Number of machine pole pairs.  

ωs: Pulsations of the stator electrical quantities.  

ωr: Pulsations of the rotor electrical quantities. 

5 Vector Control of DFIG by 

Orientation Flow Rotor  
In this work we have proposed a vector control law 

for DFIG based on the orientation flow rotor. In this 

respect, it demonstrates the relations between the 

stator and rotor variables. These relations will allow 

the rotor to act on signals to control the exchange of 

active and reactive power between the rotor of the 

machine and the grid [11].  

In this control, the flow rotor rϕ is oriented in 

the direction axis d. Thus, we can write [12]: 
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0; == rqrrd ϕϕϕ    (14) 

The expression of the flow rotor and the stator then 

becomes: 
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The expression of the electromagnetic torque then 

becomes [16]: 

Mrqsrsqrdem IILLPC ....).( σϕϕ −==   (16) 

From the previous equation, we can derive the 

equations linking the rotor and stator voltages: 
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The vector control the DFIG allows us to express 

the expressions of active and reactive power as 

followings: 
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We replace the Vrd and Vrq tensions in Pr and Qr 

are obtained: 
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The power Pr is proportional to the current Irq if the 

flow is kept constant. We can then write: 
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The variables references values are defined to 

control.  Thus we have the rotor currents reference. 
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6 Current Control 

The current control ensures voltage regulation of the 

DC bus and control power factor of the grid side. 

The objective of the control is to maintain the 

voltage of DC bus constant while absorbing a 

current to be sinusoidal as possible, with the 

possibility of the grid side the power factor 

adjustment. The grid side converter is controlled 

such that the active power and reactive power grid 

side are written as follows [6]: 
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With, Um : is the amplitude of the phase voltage. 

Applying the mesh law, we obtain the tension of the 

filter is written in matrix form in the "abc" plan. 
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This gives the differential equation of continuous 

DC bus: 
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The representation status of an inverter in the plan 

'abc' is non-linear (variable in time). We use the 

PARK transformation plan “dq” to facilitate 

implantation and extraction of harmonics [13]: 
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By applying the Park transformation to equation 

(22) and (23) we find the following relation 
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The variables references values are defined to 

control. These are the reference voltages for the 

inverter. 
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With: 
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The general structure of the flow rotor orientation in 

a wind system is detailed in the figure below: 

 
 

Figure 8.  General structure of the orientation control the flow rotor applied to a wind system.  

7 Simulation and Test Performance & 

Discussion 
The following figure presents the global model of 

the wind system is simulated in the 

Matlab/Simulink/. The model consists: the wind 

turbine, the doubly fed induction generator (DFIG), 

two power converters that connect the rotor to the 

grid: 

 

Figure 9.  Simulation general diagram of the orientation control the flow rotor on Matlab / Simulink.
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V=11m/s. as shown in the following figure: 
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Figure 10.  Wind Constant profile  

The following figures show the wind system 

performance at constant speed. 

 
Figure 11.  Turbine speed  

 (a) 

 
(b) 

Figure 12.  (a)Turbine torque, (b) electromechanical torque. 

 
(a) 

  

(b) 

Figure 13.  (a) Power coefficient, (b) Power turbine.    

(a)

 (b) 

Figure 14.  Characteristics of the turbine: (b) lambda, (a) Phis  
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 (a) 

 

(b) 

Figure 15.  (a) The Power Active, (b) Power Reactive of MADA  

 

(a) 

 

(b) 

 

(c) 

Figure 16.  (a) Stator voltage and current in the plan “abc”  (b) Zoom 

stator voltage in the plan "abc", (c) Zoom stator current in the plan 

"abc". 

It is observed that the grid currents are sinusoidal 

and in phase with the mains voltages, confirming 

that the inverter perfectly compensates the harmonic 

currents and the reactive power consumption on the 

one hand by the load and secondly the reactive 

power consumed by the DFIG. We also note that the 

frequency of the rotor currents is different from the 

frequency of the grid current. The DC bus voltage is 

perfectly maintained at its reference value to 1200V, 

as the rotor speed is regulated at 529.5 rad / s. 

7.2 Response to a ramp 
The wind system is supposed to functioning at its 

optimal point such as, at a wind speed V= 6 m/s, the 

optimal specific speed λopt=12, the maximum 

power coefficient Cp = 0.497 and the wind extracts 

maximum performance by the MPPT method. At 

time t = 0.5 s the wind changes speed as a ramp to 

another value V = 10 m / s for a simulation time as 

shown in the following figure: 

 
Figure 17.  Evolution of the wind speed. 

Following Figures present the results obtained for 

this application of the wind. 
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Figure 18.  Turbine speed  

 

(a) 

 

(b) 

Figure 19.  (a) Turbine torque, (b) Electromechanical Power 

 

(a) 

 

(b) 

Figure 20.  (a) Power coefficient, (b) Pwer turbine. 

 
(a) 

 
(b) 

Figure 21.  Characteristics of the turbine :(a) lambda, (b) Phis. 
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(b) 

Figure 22.  (a) Active Power, (b) Reactive Power of MADA  

 

(a) 

 

(b) 

 

(c) 

Figure 23.  (a) Stator voltage and current in the plan “abc”  (b) Zoom 

stator voltage in the plan "abc", (c) Zoom stator current in the plan 

"abc". 

In the case of this wind model, note that the wind 

system practically functions the same manner 

previous, the active and reactive stator powers 

fluctuate and oscillating around their values in the 

case of the model. This phenomenon is due to the 

electronic switch at the rotor converter. From these 

simulations, One can notice the robustness of the 

vector control in terms of decoupling and the good 

results achieved by regulating the classical PI 

corrector which adequately ensured the wind MPPT 

system. 

7.3 Response to variable speed 

We applied a random wind profile closer to the 

evolution of the real wind was filtered to suit the 

dynamics of the system studied. The objective is to 

see the degree of maximum power point tracking 

and effectiveness of speed control provided by the 

conventional PI.The system parameters are given in 

the annexes. A random wind profile is applied to the 

system Figure 10. 

 
Figure 24.  Profile of wind speed. 

The following figures show the performance of 

the control system. 
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    (b) 

Figure 25.   (a) Power of the turbine, (b) Electromagnetic torque. 

 

(a) 

 

(b) 

Figure 26.   Characteristics of the turbine :(a) lambda, (b) phis. 

The following two figures show the wave form of 

the active and reactive power, stator and rotor.  

 

(a) 

 (b) 

Figure 27.  (a) The Power Active, (b) Power Reactive of MADA . 

The following figure shows the wave forms of the 

voltages and stator currents. 

 

(a) 

 

(b) 

 

(c) 

Figure 28.  (a) Stator voltage and current in the plan “abc”  (b) Zoom 

stator voltage in the plan "abc", (c) Zoom stator current in the plan 

"abc". 
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One can notice that the stator voltage is equal to that 

of the grid, while the currents obtained are 

sinusoidal, which implies a clean energy without 

harmonics supplied or drawn by the DFIG. The 

current and stator voltage are in phase opposition, 

this means that the stator active power is supplied 

from the generator to the grid. 

8 Conclusion 
The object of this work consists to control, analysis, 

development, modeling and simulation of a wind 

system operating at different wind speeds.  

The application of the orientation control of the 

rotor flow as the direct axis "d" gives a simple 

stabilization of the wind system.  

Indeed, it not only allows us to simplify the model 

of the machine but also to decouple torque control 

and the flow. From numerical simulation, it was 

found that effectively the rotor flow orientation 

technique to decouple the flow, the powers so that 

the direct component of the rotor current control 

reactive power and the quadrature component 

control the active power. This allows us to obtain 

high dynamic performance similar to that of the 

MCC. In this respect, this work can be continued 

and completed by the implementation of this 

command in a FPGA card. 

Annex: 

TABLE I.  PARAMETERS OF WIND POWER SYSTEM 

Parameters of the turbine 

Diameter of blade R=35.25 m 

Gain multiplier G=16 

Inertia of the turbine J=0.3125 Kg.m2 

Coefficient of viscosity f=0.00673 m.s-1 

Parameters of the DFIG 

Stator resistance Rs=0.455 

Rotor resistance Rr=0.62 

Stator inductance Ls=0.084H 

Rotor inductance Lr=0.081H 

Mutual inductance Msr=0.078H 

Number of poles P=2 
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